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The feasibility of automated procedures for the modeling of G-protein coupled receptors (GPCR) is
investigated on the example of the human neurokinin-1 (NK1) receptor. We use a combined method of
homology modeling and molecular docking and analyze the information content of the resulting docking
complexes regarding the binding mode for further refinements. Moreover, we explore the impact of different
template structures, the bovine rhodopsin structure, the human �2 adrenergic receptor, and in particular a
combination of both templates to include backbone flexibility in the target conformational space. Our results
for NK1 modeling demonstrate that model selection from a set of decoys can in general not solely rely on
docking experiments but still requires additional mutagenesis data. However, an enrichment factor of 2.6 in
a nearly fully automated approach indicates that reasonable models can be created automatically if both
available templates are used for model construction. Thus, the recently resolved GPCR structures open new
ways to improve the model building fundamentally.

Introduction

G-protein coupled receptors (GPCRsa) represent the largest
family of signal transducing membrane proteins in the human
genome. More than 800 GPCRs, divided into five main classes
by the so-called GRAFS system,1 have been determined.2

Although they all share a common structural feature, the
presence of seven transmembrane helices, the sequence similar-
ity is low throughout the whole phylogenetic tree. Nevertheless,
some conserved residues and motifs have been identified.3-7

The functions of GPCRs vary as much as their sequences
do. Among others, they are involved in biological processes
like blood pressure regulation, immune responses, or processing
light and smell impulses.8,9 Today, it is known that the
perturbation of GPCR function may result in severe diseases
like diabetes, cancer, central nervous system disorders, and many
more.10,11 Hence, GPCRs are very interesting targets for the
pharmaceutical industry and, consequently, about 50% of the
drugs currently on the market and 25% among the top-selling
drugs target GPCRs.12,13

Despite the great relevance of GPCRs for many biological
processes, there is only little structural information available at
atomic level due to the difficulties in crystallization and the size
of these proteins. So far, only four GPCR structures have been
resolved at atomic resolution and three of them even no more
than a few months ago.14-17 Hence, computer-aided methods
for the prediction of GPCR structures become increasingly
important. The approaches available today can roughly be
divided into two classes: ab initio methods, where the structure

is solely predicted from the sequence18-20 and approaches based
on homology or comparative modeling, where at least one
known structure of a homologous receptor is required as a
template for model building.

In this study, we focus on comparative modeling approaches,
which have successfully been applied to different globular21 as
well as membrane proteins.22,23 The general idea is based on
the observation that three-dimensional structures of proteins are
typically more conserved than their amino acid sequences.24

Consequently, proteins with homologous sequences are expected
to show a similar three-dimensional structure. In general,
comparative modeling consists of four steps: template selection,
sequence alignment, model building, and model validation.25

In a recent study, Nowak and co-workers extended this
general framework by a molecular docking step to improve and
facilitate the model building and validation process.26 After
generating a large amount of models by an automated procedure
to sample the side chain conformational space, a potent ligand
was docked to all models to identify those side chain conforma-
tions of the binding site that are advantageous for ligand binding.
Afterward, the information of the docking runs was used to fine-
tune a new set of models by restricting the determined residues
to appropriate positions during the model building process. The
ligand was docked in the new model set, and the ligand-receptor
complexes were evaluated based on the CScore, which was used
to finally determine a set of best fitting models, re-entering the
docking procedure with 30 ligands. Despite some manual
refinements following afterward, the top-scoring ligand-receptor
complexes already revealed the general binding motifs of the
serotonin 5-HT1A receptor. With this approach, Nowak et al.
successfully modeled this aminergic receptor, yielding impres-
sive results in terms of high enrichment factors in virtual scre-
ening approaches. Remarkably, no additional experimental
information, e.g., from mutagenesis studies, has been used in
the first steps of this procedure. In our opinion, this is currently
one of the most promising methods for approaching automated
modeling of G-protein coupled receptors.
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Here, we apply Nowak’s method to the human neurokinin-1
(NK1) receptor, a member of the neurokinin receptor family.
The natural ligands of this family, the neurokinins, also termed
as tachykinins, are small neuropeptides that are widely distrib-
uted within the peripheral and central nervous systems and are
involved in neurotransmission and neuromodulation. Studies
suggest that they are involved in various inflammatory and
immune diseases.27,28 Therefore, many antagonists targeting the
NK receptors have been developed as therapeutic agents.29

Evers and Klebe already developed a homology model of
the NK1 receptor based on the structure of bovine rhodopsin,30

which was suitable to identify a novel submicromolar antagonist
by virtual screening. Similar to the approach of Nowak, they
started with a large number of initial models and used ligand
information from a docking run to further improve the models.
However, Evers and Klebe used more prior knowledge, e.g.,
about the conformation of the ligand, from the beginning. They
assumed that the bioactive conformation is identical with its
geometry in solid state and hence performed a rigid docking.
In addition, they evaluated the docking complexes based on
interactions derived from mutagenesis data rather than the
corresponding docking score. Thus, the approach of Klebe and
Evers requires strong manual interaction during the model
building and refinement process, whereas we want to judge the
feasibility of highly automated approaches to GPCR modeling.

Therefore, we explore if the procedure by Nowak et al. is
generally transferable to nonaminergic GPCR modeling to yield
suitable initial models for further refinement steps in reasonable
time and with reasonable effort. Considering that this approach
has originally been applied to an aminergic receptor (5-HT1A),
we expect significantly more intrinsic difficulties in our case
because NK1 belongs to the group of peptide binding receptors
and the putative binding site of the endogenous ligand differs
from the binding site of small molecule antagonists.

The second aim of our study is a deeper understanding of
the influence of multiple different templates on the comparative
modeling of GPCRs. Hence, we use the bovine rhodopsin
structure and the recently resolved human �2 adrenergic receptor
structure as templates in the homology modeling step. Moreover,
we combine both templates to extend the accessible conforma-
tional space, leading to larger backbone flexibility in the model
building, not investigated in aforementioned studies. We assume
that we can improve our models using multiple templates in an
automated fashion. The final evaluation of the models is based
on virtual screening techniques on a data set compiled from
the literature as well as in house molecules.

Methods

Software. All homology models presented in this work were
generated using MODELLER 8v2, an established standard for
comparative modeling.31 MOE 2007.09 (Molecular Operating
Environment) was used for the alignments as well as manually
refinements of the models.32 The protein-ligand docking was
performed using Glide (Grid-based Ligand Docking with Energet-
ics) in SP mode.33 The chemical compound was drawn using Symyx
Draw.34 The alignments were formatted and represented using
ALSCRIPT,35 the graphics containing 3D structures were generated
with BALLView,36 the molecular viewer and modeling tool of the
Biochemical Algorithms Library BALL,37 version 1.2, and the
enrichment plots were created with the statistical program tool R.38

Alignments. We computed the pairwise alignments of the human
NK1 receptor sequence (UniProt ID P25103) first with bovine
rhodopsin (PDB ID 1F88) and second with the human �2 adrenergic
receptor (PDB ID 2RH1, removing the lysozyme fusion protein)
denoting the resulting alignments as R1 and B1, respectively. To
study the impact of related sequences on the alignment, we also

performed a multiple alignment of the human NK1 receptor with
the human NK2 (UniProt ID P21452) and human NK3 (UniProt
ID P29371) sequence. The result was then aligned with the bovine
rhodopsin sequence (called R123). Repeating the procedure with
the human �2 adrenergic receptor did not change the results of the
B1 alignment. Furthermore, we carried out a multiple alignment
of the human NK1 sequence with both the human �2 adrenergic
receptor and bovine rhodopsin (called RB1). All alignments were
computed in MOE using a gap start penalty of 7.0 and a gap
extension cost of 1.0. Because of the low sequence similarity, we
decided to use the BLOSUM 30 substitution matrix. We checked
the plausibility of each alignment on both the mapping of conserved
motifs and residues of class rhodopsin-like GPCRs as well as the
number of gaps appearing in helical regions, manually adjusting
unfavorably aligned regions. The residues proposed to be involved
in the binding mode are additionally denoted using the Ballesteros-
Weinstein nomenclature.39

Model Generation. For each alignment, 300 homology models
were generated by employing MODELLER,26 using the structure
of bovine rhodopsin (1F88) and/or the human �2 adrenergic receptor
(2RH1) as templates. From the sequence alignment of the target
protein and known template structures, MODELLER derives
restraints expressed in terms of conditional probability functions
(pdfs) for the target protein.40 Optimizing the placement of the target
protein coordinates in the molecular pdf with a conjugate gradient
algorithm in combination with some nondeterministic steps, the
program obtains slightly different models for the same alignment.
Thus, the generation of a large number of models ensures a thorough
sampling of the conformational space of the side chains of the
receptor. Employing more than one template increases backbone
flexibility and thus expanding the accessible conformational space.

Docking. The potent nonpeptide NK1 antagonist CP-9634541 1
(cf. Figure 1) was flexibly docked into all generated models using
Glide in SP mode. Glide first produces a rough initial guess to
reduce the search space, followed by a torsion-angle optimization
of the most promising initial candidates. The best results of this
second stage are then refined by a Monte Carlo method to produce
the predicted docking pose.42 Finally, the best docking pose based
on the Glide-score is chosen. Prior to docking, the ligand was
optimized with the MMFF94 force field in MOE.

Model Refinements. Following the approach of Nowak, we
examined the top scoring docking poses to identify the essential
key interactions that could be used to guide the model refinement.
As shown in the Result and Discussion section in detail, none of
such interactions could be found prevalent in the top scoring
docking poses. Thus, we had to visually inspect the docking results,
taking further knowledge from mutagenesis studies into account.
The most reliable suggestions concerning the binding mode propose
a H-bond between the exocyclic secondary amine to Gln 165 (4.60)
and an interaction between His 197 (5.39) and the benzhydryl
group.29,41,43-46 These findings from mutagenesis experiments are
now taken as a substitute for the information, which was gained in
the study by Nowak et al. by the first docking runs.

In a first refinement step, we restrained the �1 angle and the �2

angle of Gln 165 (4.60) to -60° and to 170°, respectively, to ensure
its proper orientation into the binding pocket. The interaction
between His 197 (5.39) and 1 as well as the π-stacking between

Figure 1. Structure of the quinuclidine amine 1 (CP-96345).41

Automated G-Protein Coupled Receptor Modeling Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10 3167
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Tyr 272 (6.59) and His 197 (5.39) as suggested by mutagenesis
experiments was strengthened by a clockwise rotation of helix 5
by 30° (seen from extracellular side) in the bovine rhodopsin
template.

To further follow the approach by Nowak, we selected 14
conformationally diverse models from the restrained model set and
docked a balanced set of 50 highly (IC50 < 1 µM) and weakly (IC50

> 10 µM) active NK1 ligands taken from the public database
AurSCOPE to determine the most useful model for the identification
of active ligands by docking. Unfortunately, but not unexpected,
there was no model that separates the two groups satisfactorily.
The failure of all models to separate the ligand groups can be
attributed to the kind of interactions involved in the binding mode
as well as the quite small activity difference for both ligand sets.
Thus, the docking scores and also visual inspection did not give us
additional information, which can be used for model improvement,
and therefore we skipped further studies on multiple ligands, which
is also in line with our aim to model GPCRs as automated as
possible.

In a second refinement step manual changes, i.e., manual side
chain placement of the binding site residues of three models
followed and the selection process will be described in the next
chapters. To relax the conformation of the generated docking poses,
we performed an energy minimization of the side chain atoms
employing the AMBER99 force field as implemented in MOE. The
backbone atoms of the modified residues and the ligand atoms were
kept fixed during this relaxation. Thereafter, we performed an
energy minimization of the entire binding pocket and the docked
ligand using the MMFF94 force field. All these refinement steps
were done in MOE with default parameters.

Virtual Screening. For the virtual screening, we combined public
domain ligands from the database AurSCOPE GPCR (company
Aureus Pharma) and in house data of Boehringer Ingelheim to a
set of 1784 molecules including 58 active ones. Active molecules
are defined to have an IC50 value lower than 1 µM and all inactive
ones have an IC50 value larger than 10 µM. The set was balanced
among others with respect to the average molecular weight (actives:
463.7 Da; inactives: 425.5 Da) as well as average charge (0.414,
0.407) and the average number of rotatable bonds (6.88, 7.06) to
minimize the influences of these parameters. The protonation states
of the compounds were assigned using MOE, and the compounds
were energy minimized with the MMFF94 force field before
docking. The virtual screening was done with GLIDE in SP mode
using default parameters and the enrichment plots were generated
using R.

Results and Discussion

Alignment Study. The overall sequence identity of the human
NK1 receptor with bovine rhodopsin and with the human �2

adrenergic receptor is lower than 30%. In this range, the number
of alignment errors increases rapidly, resulting in the most
substantial origin of errors in comparative modeling.47 However,
class I GPCRs share some highly conserved residues and motifs
such that an unambiguous alignment can be achieved.3-7 In all
four alignments (see Figure 2 and Table 1), the conserved
residues and motifs are correctly aligned, resulting in a proper
arrangement of the seven helical regions. Moreover, 30 residues
forming the general binding cavity for ligands identified by
Rognan et al.48 in an extensive study of 369 nonolifactory human
GPCR sequences are also correspondingly aligned in all four
cases. The alignment of the binding site residues of the human
NK1 receptor proposed by the interaction model of Evers and
Klebe, namely Gln 165, Glu 193, His 197, Ile 204, His 265,
and Tyr 272, agrees with their published alignment,30 except
in the alignment R1. In this alignment, Tyr 272 (6.59) was
mapped on Tyr 274 (6.57) of the bovine rhodopsin structure
instead of the neighbored residue Phe 276 (6.59). This mapping
was achieved by the insertion of a gap into the helical region.

In our opinion, inserting gaps in structurally conserved regions
is highly unlikely and indicates that a family alignment (as in
the case of the multiple alignment R123) gives more reasonable
results.

Structure Study. To obtain reasonable orientations of the
binding site residues in the homology model, these residues need
to be mapped on residues of the template structure that are
pointing into the binding pocket. As mentioned before the
essential NK1 residues for binding of 1 affirmed by various
mutagenesis studies are Gln 165 (4.60) and His 197 (5.39).44,45

Examining our alignments with bovine rhodopsin, these amino
acids are mapped to Pro 171 (4.60) and Val 204 (5.39),
respectively. Both residues are oriented into the binding pocket,
and thus the alignment seems to be reasonable in this region.
In the case of the human �2 adrenergic receptor, the previously
mentioned amino acids are mapped to Pro 168 (4.60) and to
Ala 200 (5.39). While the latter is directed toward the binding
pocket, the position of Pro 168 (4.60) does not seem to be
suitable because it is oriented toward the neighbored helix 5.
However, the positions of its neighbors Lys 167 (4.59) and Ile
169 (4.61) are even less appropriate. Altogether, we suppose
that the orientation of helix 4 in rhodopsin seems to be a more
suitable template than helix 4 of the human �2 receptor. For
helix 5, however, the opposite holds regarding the corresponding
residues to His 197 and Ile 204 (see Table 2). Hence, we
expected that a model generated by the combination of both
templates and thus including backbone flexibility will perform
best in the virtual screening experiment.

In the case of the pairwise alignment R1, the mapping of
Tyr 272 in NK1 to Tyr 274 (6.57) in rhodopsin is less reasonable
than the mapping to Phe 276 (6.59) as in the case of the multiple
alignment because it is directed away from the TM cavity. Thus,
we skipped the alignment R1 in the further modeling steps.
Other residues being involved in the binding mode denoted by
Evers and Klebe are Glu 193 (5.35), Ile 204 (5.46), and His
265 (6.52).30 Table 2 lists the corresponding residues, which
are all pointing well into the TM cavity (cf. Figure 3).

In addition, we examined the position of the extracellular loop
2 (EL2) in the two template structures carefully because it is
described in other studies that the EL2 of rhodopsin causes many
difficulties in the docking process.30,50 Following the approach
of Nowak, this extracellular loop was cut out of the homology
model in a preprocessing step to ensure a successful protein-
ligand docking. In contrast, the EL2 of the human �2 adrenergic
receptor is located well above the TM cavity, forming a short
helix rather than a �-hairpin. Hence, we did not expect
significant difficulties caused by the EL2 in the docking step.
Consequently, we have cut out the EL2 only in the homology
models that are exclusively based on the template structure of
bovine rhodopsin (alignment R123).

Docking. One of the best studied ligands for the NK1 receptor
is 1, and thus we used it for our first docking run into our initial
models (Table 3, no. 1). Mutagenesis studies suggest that Gln
165 on helix 4 forms a hydrogen bond with the exocyclic
secondary amine.44 Furthermore, the binding affinity is nega-
tively affected as soon as His 197 is mutated to alanine. The
analysis of a series of 1 analogues identified the benzhydryl
group as the binding partner.45 Besides these two residues,
various assumptions about other residues being involved in the
binding mode, e.g., Glu 193, Ile 204, His 265, and Tyr 272,
have been published.29,30,46

Because one of our aims was to test the general applicability
of automated modeling procedures for nonaminergic GPCRs,
we sorted the models according to their docking score of the

3168 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10 Kneissl et al.
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best scoring pose as done by Nowak.26 However, we could not
identify essential key interactions in the docking complexes that
could be used to guide the model refinement by investigating
the models and the corresponding score. Hence, solely from
the docking pose and score, it is not possible to distinguish
between reasonable and unreasonable homology models. We
suppose that the reason for this result might be the different
types of interactions. Nowak et al. modeled the serotonin 5-HT1A

receptor, where strong interactions like salt bridges between the
ligand and the receptor were formed during the docking
procedure. In contrast, ligand binding in the human NK1-

receptor involves only weaker interactions like hydrogen bonds
or aromatic interactions. The scoring functions for docking do
not seem to be sufficiently sensitive to properly rank these kinds
of interactions, such that the score is not a good indicator for
the quality of the docking poses in this case. Moreover, small
changes in the conformation can yield large binding energy
differences,51 and because the scoring functions are adjusted
based on the crystal structures, homology models perform in

Figure 2. Sequence alignments used for model generation: First, the pairwise alignment of the human NK1 receptor and bovine rhodopsin (R1).
Second, the pairwise alignment of the human NK1 receptor and the human �2 adrenergic receptor (B1). Third, the multiple alignment of the human
NK1-3 receptors and bovine rhodopsin (R123). Fourth, the multiple alignment of the human NK1 receptor, bovine rhodopsin, and the human �2
adrenergic receptor (RB1). The red and orange marked regions are the TM helices of both templates and the EL2 of the rhodopsin structure,
respectively. The light-red marked regions indicate the TM helices of the human NK1 receptor predicted by TMpred.49 Blue marked residues are
conserved residues/motifs of class I GPCRs. Residues forming the TM cavity are marked in green.48 All binding site residues of the human NK1
receptor, proposed by Evers and Klebe,30 are colored in yellow. The alignments were formatted using ALSCRIPT.35

Table 1. The Four Alignments Used in This Worka

name used sequences

R1 human NK1 and bovine rhodopsin
B1 human NK1 and human �2 adrenergic receptor
R123 human NK1, human NK2, human NK3, and bovine rhodopsin
RB1 human NK1, bovine rhodopsin, and human �2 adrenergic receptor

a The names are composed of the used template structures bovine
rhodopsin (R) and human �2 adrenergic receptor (B) as well as the number
of the human neurokinin receptor (1-3).

Table 2. The Mapping of the NK1 Residues Involved in the Binding
Mode of Ligand 1 and Their Corresponding Amino Acids Based on the
Different Alignments

NK 1
bovine rhodopsin

(R123)

human �2

adrenergic
receptor (B1)

bovine rhodopsin
(R1)

Gln 165 (4.60) Pro 171 (4.60) Pro 168 (4.60) Pro 171 (4.60)
Glu 193 (5.35) Asn 200 (5.35) Asn 196 (5.35) Asn 200 (5.35)
His 197 (5.39) Val 204 (5.39) Ala 200 (5.39) Val 204 (5.39)
Ile 204 (5.46) His 211 (5.46) Ser 207 (5.46) His 211 (5.46)
His 265 (6.52) Ala 269 (6.52) Phe 290 (6.52) Ala 269 (6.52)
Tyr 272 (6.59) Phe 276 (6.59) Val 297 (6.59) Tyr 274 (6.57)

Automated G-Protein Coupled Receptor Modeling Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10 3169
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many cases worse than the corresponding crystal structures,
especially if no strong interaction is involved in the binding
mode. Therefore, the poses have to be inspected visually using
additional experimental information, e.g., from mutagenesis
studies as described in the next section.

Model Refinements. Because the automated docking runs
failed to identify crucial interactions between 1 and the receptor,
we were forced to include mutagenesis data in the following
refinement steps. We focused on the key interaction for binding
1, a hydrogen bond between Gln 165 (4.60) and the exocyclic
secondary amine of 1 as well as an aromatic interaction between
His 197 (5.39) and the benzhydryl group of 1.

The first step was to reject all models, which do not agree
with the mutagenesis studies. To this end, we used two simple
filtering criteria: a distance filter between the Cδ of Gln 165
(4.60) and the exocyclic secondary amine of 1 and a distance
filter between the Cγ of His 197 (5.39) and the carbon atom of
1 connecting the two benzene rings. Combined, these two filters
reduced the overall number of models based solely on bovine

rhodopsin (R123) to approximately 4% of all complexes.
Although a distance filter of 5 Å and 7.5 Å, respectively, is
very coarse, visual inspection confirmed that both residues point
into the binding pocket and particularly to their postulated
binding partners.

Closer inspection also showed that in the remaining models,
the torsion angles of Gln 165 (4.60) have values of �1 ) -60°
((5°) and �2 ) 170° ((5°). Thus, according to the original
approach of Nowak, we constrained these angles for a new
model generation run to optimize the distance to the binding
partner of 1 (Table 3, no. 2). In the case of His 197 (5.39), we
decided to modify the corresponding helix in the rhodopsin
template by a clockwise rotation of 30°. This step was
introduced to achieve both a strengthening of the interaction
with 1 and to facilitate the formation of the π-stacking. Although
this means a drastic change of the conformation, it has been
shown by Vaidehi and co-workers52 that ligand induced changes
of the backbone are quite usual. We decided to rotate the helix
directly in the template instead of postprocessing the generated

Figure 3. On the left side the template structure of bovine rhodopsin and on the right side the structure of the human �2 receptor is represented.
The removed EL2 of the bovine rhodopsin structure is marked in yellow. All residues corresponding to the binding partners, proposed by Klebe,
based on the alignments R123 (left) and B1 (right) are shown.

Table 3. All Model Types Generated in the Modelling Procedure

no. name alignment template restraints/refinements

1 INIT R123 1F88 cut out EL2
2 REST R123 1F88 cut out EL2

Gln 165: �1 angle ) -60°, �2 angle ) 170°
3 ROTA R123 1F88 (rotated helix 5 by 30° clockwise) cut out EL2

Gln 165: �1 angle ) -60°, �2 angle ) 170°
4 BETA B1 2RH1 none
5 BOTH RB1 1F88 + 2RH1 none
6 MO_INIT R123 1F88 cut out EL2

manually optimized binding pocket
7 MO_REST R123 1F88 cut out EL2

Gln 165: �1 angle ) -60°, �2 angle ) 170°
manually optimized binding pocket

8 MO_ROTA R123 1F88 (rotated helix 5 by 30° clockwise) cut out EL2
Gln 165: �1 angle ) -60°, �2 angle ) 170°
manually optimized binding pocket

9 CONS R123 1F88 (rotated helix 5 by 30° clockwise) majority vote of 14 selected models
10 DEST R123 1F88 cut out EL2

manually destroyed binding pocket
11 RAND R123 1F88 cut out EL2

3170 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10 Kneissl et al.

D
ow

nl
oa

de
d 

by
 J

on
at

ha
n 

B
er

ry
 o

n 
Se

pt
em

be
r 

11
, 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
pr

il 
28

, 2
00

9 
| d

oi
: 1

0.
10

21
/jm

80
14

48
7



models to avoid clashes in the postprocessing procedure. In these
models, which are based on the modified template structure,
we restrained the torsion angles of Gln 165 (4.60) as described
above, too (Table 3, no. 3). This manual modification of the
template, however, is not in the main focus of this study, which
is the test of an automated GPCR modeling and virtual screening
procedure. The modification of the template was done manually
according to mutagenesis data, and therefore this technique may
yield GPCR models closer to reality but is not suitable for an
automated approach.

For the 300 models based on the human �2 adrenergic
receptor (B1, RB1), we were not able to identify common side
chain features. In both cases, we used the above-mentioned
distance filters to reject those models, which do not agree with
the mutagenesis studies. However, only few of the models fulfill
the filter criteria (<1%). In particular, for the models based
on the aligment RB1, the backbones of the models vary too
much such that a restraint or other modifications can not be
applied to continue with a model refinement. For the subsequent
virtual screening experiment, we selected from both model sets
(Table 3, nos. 4 and 5) by visual inspection a model among the
top 10 scored complexes showing reasonable orientation of
residues Gln 165 (4.60) and His 197 (5.39).

In a second refinement step, we selected from the pool of all
generated models based on the R123 alignment 14 models
manually. The selection was guided by the ability of various
models to accommodate some public domain ligands as taken
from the Aureus database. The models were picked according
to reasonable docking poses and conformational diversity of
amino acid residues close to the active site. To test the influence
of the modeling techniques so far we selected three of these 14
models, one belonging to the INIT, one to the REST, and one
to the ROTA model set (Table 3, nos. 6-8) to improve their
interactions manually. This is not in line with an automated
modeling process, but it will give us information about the
general suitability of the various approaches for model genera-
tion so far.

Finally, we built a consensus model of all these 14 selected
models (Table 3, no. 9). To this end, we took the backbone of
a ROTA model and manually adjusted the conformation of the
binding site residues to the conformation that occurs in the
majority of all complexes, a procedure which is in line with an
automated modeling process.

Virtual Screening. A virtual screening experiment was
performed on a total of 11 different models (Table 3). Our two
negative controls, an arbitrarily chosen model (RAND) from
the INIT model set and a model with a “destroyed” pocket
(DEST) by manually manipulating the side chains such that they
fill the binding site, worked as expected because no enrichment
could be found (data not shown). Particularly, in the case of
the model DEST (manually closed pocket), only a small amount
was able to be docked into the binding pocket by GLIDE.
Although more ligands (about two-third) could be docked into
the model RAND, the enrichment factor is lower than random
for this model.

Next, we compared the enrichment curves of the three
nonoptimized models (nos. 1-3) with their corresponding
manually optimized ones (nos. 6-8) (left picture in Figure 4).
Although we expected an improvement, the manually optimized
models yield a lower enrichment factor in two of the three cases.
The reason for this effect depends on the optimization process
itself and may be attributed to overfitting: since we improved
these models manually to strengthen the contact between the
important side chain residues and 1, we simultaneously may
have reduced the possible interactions to other ligands not taken
into account. This led to a worse result in the virtual screening.

The analysis of the enrichment curves of the three other
models (CONS, BETA, and BOTH) shows interesting results
(right picture in Figure 4). In contrast to the manual refinements,
the CONS model improved the results noticeable. Hence, the
combination of the best side chain conformations is a reasonable
step in model tuning. Its enrichment factor of the top 10% equals
2.6, which is in agreement with other virtual screening experi-
ments of nonaminergic GPCR models.53

Figure 4. On the left the enrichment curves of the nonoptimized models and the corresponding manually optimized ones are shown. The figure
on the right shows enrichment curves of the best models using the rhodopsin structure, the model using both templates, and the consensus model.
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For the models based on �2, we also expected an improvement
for two reasons. First, the position of the EL2 well above the
transmembrane regions and, second, the appropriate orientation
of helix 5. But the enrichment factor is surprisingly lower than
random (curve not shown). We suppose that especially the
position of Gln 165 on helix 4 might be crucial for the binding,
but in this region, the �2 adrenergic receptor is unsuitable as
discussed in the section Structure Study. However, using the
combination of the two templates �2 and rhodopsin (BOTH),
the enrichment curve equals the one of the consensus model
and is in most cases even better (right picture in Figure 4).
Remembering that this model was straightforwardly generated,
e.g., without cutting out EL2 or any refinement steps, this is a
remarkable result. Most steps were performed automatically
using scripting languages with the only (important) exception
of the choice of the model out of the 300 generated. This manual
effort was, however, negligible, because we have only looked
at the models with the 10 best docking scores. Hence, in this
case, the docking score guided us to find a reasonable model
efficiently, although we were not able to discover important side
chain conformations for further refinement steps as shown by
Nowak et al.

In Figure 5, we represent the backbone of the model BOTH
used in the virtual screening experiment. Here, the advantages
of both templates are combined. First, the discussed positions
of Gln 165 (4.60) and His 197 (5.39) are directed well into the
binding pocket and, second, the previously mentioned π-stacking
between Tyr 272 (6.59) and His 197 (5.39) is formed.

This result sheds light on the invaluable information the
GPCR modeling community has gained by the resolution of
the �2 receptor and will gain by every newly emerging GPCR
crystal structure.

Conclusion

In this study, we have investigated to which extent automated
modeling of GPCRs is possible. Therefore, we followed the
first modeling steps described by Nowak and co-workers. In
our opinion, this is the most promising approach to improve
homology models on an automated basis. We have thus
attempted first to employ the approach to the modeling of the
human NK1 based on the bovine rhodopsin template structure.

However, we soon found that this approach does not work
for the nonaminergic case: our experiments found no essential
key interactions in docking runs that could be used to guide
the model refinement. We suggest that the reason for this
insufficient result lies in the different type of interactions because
in NK1 modeling no strong interactions such as salt bridges
are involved in binding. In particular, aromatic interactions do
not seem to be parametrized in an optimal way in current scoring
functions and are therefore hard to identify. The high flexibility
of 1 complicated the docking procedure additionally. Hence,
we had to include additional experimental information derived
from mutagenesis studies from the very beginning. The refine-
ments, especially the rotation of helix 5 in the bovine rhodopsin
structure, improved the results significantly. This shows that
for modeling GPCRs, we still rely on experimental data to
generate promising models.

Employing the human �2 adrenergic receptor as a single
template, however, yielded unsatisfying results, such that even
a manual refinement based on the docking results was not
feasible. Nonetheless, the combination of both available tem-
plates (rhodopsin and �2) and the resulting expansion of the
backbone conformational space for model building yields an
enrichment factor in the range of the manually constructed
consensus model. This was achieved without further refinements
and just by choosing one of the top scoring docking complexes
of 1, whose side chain orientations are confirmed by experi-
mental data. Thus, we suggest that the usage of multiple
templates improves the models in a constitutive way. Hence,
the human �2 adrenergic receptor and probably also the other
recently crystallized structures are very valuable for the homol-
ogy model building of GPCRs. This shows that the availability
of more structures improves the model building process because
a larger conformational space, in particular in backbone regions,
can be sampled. Using homology modeling in combination with
docking, however, seems to be a viable option for automated
receptor modeling if an essential very strong interaction between
the ligand and the receptor is postulated, as in the case of amine
receptors or fatty acid receptors.

Concluding our study, we suppose that data from mutagenesis
studies must still be used to guide through the refinement steps
of initial GPCR models. However, we suggest that these models
should be generated based on multiple templates to include
backbone flexibility. Hence, the crystallization of further GPCR
structures has opened new ways to improve GPCR model
building significantly.
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